Medimint - Project Proposal

This system aims to leverage blockchain technology for secure and efficient sharing of
medical records between doctors and patients. The URI is stored on-chain and the
metadata for the medical study can be stored on IPFS, which will reference to the patient

information that is encrypted and securely stored off-chain.

Architecture Scheme for Medical Information

Sharing System

Smart Contract Layer

e Smart Contract: The core smart contract handling the logic for token creation,
transfer, and access control.

e Trusted Issuer Contract: Manages the entities (e.g., hospitals, doctors)
authorized to issue or validate medical data NFTs.

e Deployer + Registry Smart Contract: Facilitate deployment of new contracts
and maintain a registry for easy tracking and management.

Tokenization of Medical Records

e Medical Record Tokens: Each medical record (or a batch of related records) is
represented as a unique token. These could be fungible (for standard records) or
non-fungible (for unique, patient-specific records).

Access Control and Permissions

e Utilize transfer and balance functions for managing access to multiple
records.

e Implement role-based access control within the smart contract to enforce who
can access, transfer, or update a medical record token, etc

Security and Compliance

e Data Encryption: Encrypting sensitive medical data both on and off-chain.
e Compliance Layer: Ensuring that all interactions with the blockchain adhere
to healthcare regulations like HIPAA.



Traceability

e Each action that involves the medical records will be traceable and visible on
the blockchain explorer - mint NFT, share permission, revoke permission, etc

Blockchain Network

e Public/Private Blockchain: A public blockchain can be used, raising the need to gas
tokens that needs to be available for each user. Alternatively, a private blockchain
or account abstraction can be considered.

Note:
This streamlined proposal also demonstrates the feasibility of implementing the following
functionalities using the Stellar network.
e HD Wallet Management: Implementation of Hierarchical Deterministic (HD) wallets.
e ECDSA Encryption: Integration of Elliptic Curve Digital Signature Algorithm (ECDSA)
for secure transaction signing.
e NFT Minting: Basic functionality to mint Non-Fungible Tokens (NFTs) on the Stellar
blockchain.

e Gasless Transactions with Bump Fees: Enabling transactions with no upfront fees for
users, utilizing Stellar's bump fee mechanism.

Application - Backend (APl + Workers)

We plan to build the system using Node.Js framework due to its reliability and versatility.
Also, there is a supported package for handling DICOM format

System Management:
e AWS Cloud Integration: Leverage AWS services for scalability and
reliability.
e Media Upload/Download, CDN, Caching: Ensure efficient handling of

large files like medical images, using CDN for faster access and caching
strategies for improved performance.

Encode/Decode DICOM:

e Handle medical imaging data effectively, ensuring compatibility with
standard medical image formats.
Encrypt/Decrypt Resources:
e Implement strong encryption algorithms for data at rest and in transit,
crucial for patient data privacy.
Wallet Management:

e Manage private keys (PK), sign messages and transactions, broadcast
transactions. e Lit Network Integration: For decentralized access control and
data encryption.

User Management:

e Comprehensive user management including authentication, profile

management, notifications, and email services.

DB Management:



e Manage local SQL databases, ensure efficient data migrations, regular
maintenance, and robust backup strategies.

Access Control List:

e Implement robust authentication and authorization mechanisms, crucial for
data security.

User Actions:

e Enable users to interact with medical records (create, share, view, revoke
permissions, request access).

Blockchain Watchers (Workers):

e Monitor blockchain events, important for syncing on-chain events with the

application.

Application - Frontend (React.JS)

UI/UX Design Integration:

e Integrate design, ensuring they are user-friendly and intuitive, especially given

the complexity of the data and interactions.
Responsive Design:

e Ensure compatibility across various devices, particularly important for medical
professionals and patients who may access the system through different
platforms.

Accessibility:
e Design with accessibility in mind to accommodate users with different abilities.
Security Considerations:

e Implement security best practices in the frontend to prevent common
vulnerabilities like XSS, CSRF, etc.

e Real-Time Updates:

e For notifications and blockchain event monitoring.

Additional Considerations

Regulatory Compliance:
o Ensure compliance with healthcare regulations like HIPAA and data
protection laws.
Testing and QA:
o Manual testing to ensure reliability and user-friendliness, unit testing for
smart contracts with 100% code coverage.
Scalability:
o Design the system to be scalable to handle increasing loads and
future expansions.
e Documentation and Training:

o Provide comprehensive documentation and training materials
for end-users.

Architectural Diagrams:
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