Medimint - Project Proposal

This system aims to leverage blockchain technology for secure and efficient sharing of
medical records between doctors and patients. The URI is stored on-chain and the
metadata for the medical study can be stored on IPFS, which will reference to the patient

information that is encrypted and securely stored off-chain.

Architecture Scheme for Medical Information

Sharing System

Smart Contract Layer

e Smart Contract: The core smart contract handling the logic for token creation,
transfer, and access control.

e Trusted Issuer Contract: Manages the entities (e.g., hospitals, doctors)
authorized to issue or validate medical data NFTs.

e Deployer + Registry Smart Contract: Facilitate deployment of new contracts
and maintain a registry for easy tracking and management.

Tokenization of Medical Records

e Medical Record Tokens: Each medical record (or a batch of related records) is
represented as a unique token. These could be fungible (for standard records) or
non-fungible (for unique, patient-specific records).

Access Control and Permissions

e Utilize transfer and balance functions for managing access to multiple
records.

e Implement role-based access control within the smart contract to enforce who
can access, transfer, or update a medical record token, etc

Security and Compliance

e Data Encryption: Encrypting sensitive medical data both on and off-chain.
e Compliance Layer: Ensuring that all interactions with the blockchain adhere
to healthcare regulations like HIPAA.



Traceability

e Each action that involves the medical records will be traceable and visible on
the blockchain explorer - mint NFT, share permission, revoke permission, etc

Blockchain Network

e Public/Private Blockchain: A public blockchain can be used, raising the need to gas
tokens that needs to be available for each user. Alternatively, a private blockchain
or account abstraction can be considered.

Note:
This streamlined proposal also demonstrates the feasibility of implementing the following
functionalities using the Stellar network.
e HD Wallet Management: Implementation of Hierarchical Deterministic (HD) wallets.
e ECDSA Encryption: Integration of Elliptic Curve Digital Signature Algorithm (ECDSA)
for secure transaction signing.
e NFT Minting: Basic functionality to mint Non-Fungible Tokens (NFTs) on the Stellar
blockchain.

e Gasless Transactions with Bump Fees: Enabling transactions with no upfront fees for
users, utilizing Stellar's bump fee mechanism.

Application - Backend (APl + Workers)

We plan to build the system using Node.Js framework due to its reliability and versatility.
Also, there is a supported package for handling DICOM format

System Management:
e AWS Cloud Integration: Leverage AWS services for scalability and
reliability.
e Media Upload/Download, CDN, Caching: Ensure efficient handling of

large files like medical images, using CDN for faster access and caching
strategies for improved performance.

Encode/Decode DICOM:

e Handle medical imaging data effectively, ensuring compatibility with
standard medical image formats.
Encrypt/Decrypt Resources:
e Implement strong encryption algorithms for data at rest and in transit,
crucial for patient data privacy.
Wallet Management:

e Manage private keys (PK), sign messages and transactions, broadcast
transactions. e Lit Network Integration: For decentralized access control and
data encryption.

User Management:

e Comprehensive user management including authentication, profile

management, notifications, and email services.

DB Management:



e Manage local SQL databases, ensure efficient data migrations, regular
maintenance, and robust backup strategies.

Access Control List:

e Implement robust authentication and authorization mechanisms, crucial for
data security.

User Actions:

e Enable users to interact with medical records (create, share, view, revoke
permissions, request access).

Blockchain Watchers (Workers):

e Monitor blockchain events, important for syncing on-chain events with the

application.

Application - Frontend (React.JS)

UI/UX Design Integration:

e Integrate design, ensuring they are user-friendly and intuitive, especially given

the complexity of the data and interactions.
Responsive Design:

e Ensure compatibility across various devices, particularly important for medical
professionals and patients who may access the system through different
platforms.

Accessibility:
e Design with accessibility in mind to accommodate users with different abilities.
Security Considerations:

e Implement security best practices in the frontend to prevent common
vulnerabilities like XSS, CSRF, etc.

e Real-Time Updates:

e For notifications and blockchain event monitoring.

Additional Considerations

Regulatory Compliance:
o Ensure compliance with healthcare regulations like HIPAA and data
protection laws.
Testing and QA:
o Manual testing to ensure reliability and user-friendliness, unit testing for
smart contracts with 100% code coverage.
Scalability:
o Design the system to be scalable to handle increasing loads and
future expansions.
e Documentation and Training:

o Provide comprehensive documentation and training materials
for end-users.

Architectural Diagrams:



AWS ARCHITECTU
MEDIMINT PROJECT

% Inte
Gate

User

@)

& vec
Accessible from internet

ID: vpc-0d3a5078138cd4834

IP: 172.31.0.0/16

Region: US-East-2

Security group
rnet
way Filters traffic
requests

sql
data

wmet Db instance

Ec2

Subnets

Not accesible from
internet

ID: 0fe8416b2fb01b44c
IP: 172.31.0.0/20
Zone: us-east-2a

ID: Oca01e79b5f45a956
IP: 172.31.16.0/20

Zone: us-east-2b

ID: 00d18ff030f7f38fb
IP: 172.31.32.0/20
Zone: us-east-2c

Ecs cluster

Frontend service

Frontend task definition

Frontend
container

Fargate

encryption
keys

KMS

aes-256-cbc

Load balancers

medimint-backend
Ib-prod

DNS: medimint-backend-(b-
prod-583620698.us-

east-2 elb.amazonaws.com

medimint-frontend
Ib-prod

DNS: medimint-frontend-lb-
prod-678548316.us-
east-2.elb.amazonaws.com

Backend service

Backend task definition

Backend
container

- Fargate

dicom
files

E s

medimint
bucket

Legend

Response
R

(wes3) Web3



User

Consumer/ Provider

|

MediMint Platform

4

h—.
AWS Infrastructure
—_— Blockchain
Consumers Providers
(Patients, (Imaging
Physlclan;) providers,
Physicians)
MediMint APIs FDA ::IS

(Handles business logic and
API requests like
authentication, upload, Mint,
transacition history etc. )

/' Viewer Container

~

‘1

AWS
Database
(stores
encrypted Pll data,
User profiles, User
Data)

—
—>

creation, encryption of Pll data,

AWS
Backend container server to
handle APl requests for user

decryption, wallet creation,
dicom parsing, uplaod study

AWS S3

TR

-

AWS
3rd party Al
integration

AWS
Worker container send

listen for events from
blockchain, syncs up data .

ty

AWS SES

payment
gatewat

IPFS

transactions to blockchain <
= (mint and access control),

Blockchain

smart contract maintains
rules , ownership, access

contron




